

Synonym

CCN2,NOV2,HCS24,IGFBP8,IBP-8,IGFBP-8,IGF-binding protein 8

Source

Human CTGF Protein, Tag Free(CTF-H5113) is expressed from E. coli cells. It contains AA Gly 253 - Ala 349 (Accession # Q5M8T4-1).

Predicted N-terminus: Met

Molecular Characterization

CTGF(Gly 253 - Ala 349) Q5M8T4-1

This protein carries no "tag".

The protein has a calculated MW of 11.2 kDa. The protein migrates as 10-11 kDa when calibrated against <u>Star Ribbon Pre-stained Protein Marker</u> under reducing (R) condition (SDS-PAGE).

Endotoxin

Less than 0.1 EU per µg by the LAL method.

Purity

>95% as determined by SDS-PAGE.

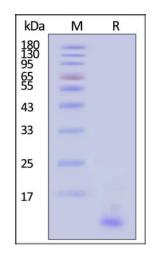
Formulation

Supplied as 0.2 µm filtered solution in PBS, pH7.4 with glycerol as protectant.

Contact us for customized product form or formulation.

Shipping

This product is supplied and shipped with dry ice, please inquire the shipping cost.


Storage

Please avoid repeated freeze-thaw cycles.

This product is stable after storage at:

- The product MUST be stored at -70°C or lower upon receipt;
- -70°C for 3 months under sterile conditions.

SDS-PAGE

Human CTGF Protein, Tag Free on SDS-PAGE under reducing (R) condition. The gel was stained with Coomassie Blue. The purity of the protein is greater than 95% (With <u>Star Ribbon Pre-stained Protein Marker</u>).

Background

Connective Tissue Growth Factor (CTGF), also known as CCN2, is a member of the CCN (CCN1-6) family of modular matricellular proteins. Like other CCN proteins, mature human CTGF consists of IGF-binding protein domain, a vWF-C domain, a TSP-1 domain, and a cysteine knot heparin-binding domain. CTGF promotes proliferation and differentiation of chondrocytes. Mediates heparin- and divalent cation-dependent cell adhesion in many cell types including fibroblasts, myofibroblasts, endothelial and epithelial cells. Enhances fibroblast growth factor-induced DNA synthesis. Analysis of CCN2 function in vivo has focused primarily on its key role as a mediator of excess ECM synthesis in multiple fibrotic diseases.

Clinical and Translational Updates

