登录 | 注册    关注公众号  
微信公众号
搜索
>产品&服务 > IFN家族免疫正当势

IFN家族免疫正当势

IFN家族免疫正当势
背景
早在1957年,干扰素(Interferon,IFN)因能够在细胞中引起抗病毒活性而首次被发现,随后,又发现它兼具抗肿瘤和免疫调节的功能。根据其受体类型,干扰素被分为三种类型:I型、II型和III型。IFN-α和IFN-β是I型干扰素中最为大众熟知的成员,主要由致病相关分子模式(PAMPs)通过刺激位于细胞膜上的Toll样受体(TLR)或胞浆模式识别受体诱导产生。II型干扰素只有一种类型,即IFN-γ,IFN-γ可由免疫系统中的多种细胞分泌产生,包括先天淋巴样细胞群,如先天性淋巴细胞(ILC)和自然杀伤(NK)细胞,以及由辅助T细胞1(Th1)和CD8细胞毒性T淋巴细胞(CTL)等组成的适应性免疫细胞。III型干扰素于2003年首次被报道,主要由非造血细胞中的上皮细胞产生,病毒可以在不同的细胞类型中介导III型干扰素的表达,然而,它产生的确切机制目前尚不清楚。三种不同类型的干扰素产生途径存在差异,主要区别在于它们分别结合不同的异源二聚体受体复合物,从而通过Janus激酶/信号转导子和转录激活子(JAK/STAT)途径发出信号。
IFN信号通路的主要转导途径

IFN信号通路的主要转导途径

靶向IFN的药物(Anifrolumab)作用机制

靶向IFN的药物(Anifrolumab)作用机制

干扰素的多种调节途径与肿瘤疾病进展密切相关。在体外条件下,干扰素可以通过上调细胞周期以抑制肿瘤细胞生长,其次,干扰素还可以和肿瘤坏死因子相关凋亡诱导配体结合诱导肿瘤细胞凋亡。在体内环境中,I型或II型干扰素信号通路的缺失会加快肿瘤的发生和发展。然而,干扰素调控肿瘤也是一把双刃剑,I型/II型干扰素应答被认为是抗肿瘤治疗期间对靶向药物产生耐药的重要途径,具有完整或部分完整干扰素信号的肿瘤细胞对病毒复制具有抵抗性,从而阻止药物发挥其正常的抗肿瘤作用,因此,这种情况下,抑制IFN的JAK/STAT信号传导,可以有效地阻止机体对治疗药物的抵抗。
ACROBiosystems百普赛斯现货供应IFN家族全系列蛋白,高质量经多重方案验证和严格质控保证,可满足靶向IFN的药物研发、功能评估及质量控制等不同应用需求。
产品特色

人源细胞(HEK293,人胚肾细胞)表达,蛋白更接近人体内的天然构象

高纯度经SDS-PAGE验证,高结构均一性经SEC-MALS验证

高生物活性经配体/受体结合的ELISA/SPR/BLI多重平台验证

ELISA检测作为QC方案,严格质控,批间一致性高,质量有保证

广泛的应用场景:免疫/抗体筛选/质量表征等

免费共享Protocol,帮助您节约方法开发时间,缩短研发周期

产品列表
分子 货号 种属 产品描述 订购/预购
IFN-alpha 1 IFA-H52H9 Human Human IFN-alpha 1 Protein, His Tag

订购

IFA-H5258 Human IFN-alpha 1 Protein, Fc Tag (MALS verified)

订购

IFA-M52H3 Mouse Mouse IFN-alpha 1 Protein, His Tag

订购

IFN-alpha 2b IFB-H5253 Human Human IFN-alpha 2b (K46R) Protein, Fc Tag (MALS verified)

订购

IFN-gamma IFG-H4211 Human Human IFN-gamma / IFNG Protein, premium grade

订购

IFN-BM411 Biotinylated Monoclonal Anti-IFNγ antibody, Human IgG1 (13E6H4)

订购

IFN-M412 Monoclonal Anti-IFNγ antibody, Human IgG1 (8C5F8)

订购

IFN-M414 Monoclonal Anti-IFNγ antibody, Human IgG1 (13E6H6)

订购

IFN-M411 Monoclonal Anti-IFNγ antibody, Human IgG1 (13E6H4)

订购

IFN-BS138 Mouse Biotinylated Monoclonal Anti-IFNγ antibody, Mouse IgG1 (13E6H6) (MALS verified)

订购

IFN-S120 Monoclonal Anti-IFNγ antibody, Mouse IgG2a (8C5F8) (SPR verified)

订购

IFN-S138 Monoclonal Anti-IFNγ antibody, Mouse IgG1 (13E6H4)

订购

IFN-alpha/beta R1 IF1-H5253 Human Human IFN-alpha / beta R1 Protein, Fc Tag

订购

IF1-H5225 Human IFN-alpha / beta R1 Protein, His Tag (MALS verified)

订购

IF1-M5225 Mouse Mouse IFN-alpha / beta R1 Protein, His Tag

订购

IFN-alpha/beta R2 IF2-H5224 Human Human IFN-alpha/beta R2 Protein, His Tag (MALS verified)

订购

IF2-H5255 Human IFN-alpha / beta R2 Protein, Fc Tag

订购

IF2-M5225 Mouse Mouse IFN-alpha / beta R2 Protein, His Tag

订购

IFA-R52H1 Rat Rat IFN-alpha/beta R2 Protein, His Tag

订购

IFN-gamma R1 IF1-H5223 Human Human IFN-gamma R1 / IFNGR1 Protein, His Tag

订购

IF1-H5254 Human IFN-gamma R1 / IFNGR1 Protein, Fc Tag

订购

验证数据
高纯度和结构均一性经SDS-PAGE及SEC-MALS验证
IFA-H5258

Human IFN-alpha 1 (Cat. No. IFA-H5258), Fc Tag on SDS-PAGE under reducing (R) condition. The gel was stained overnight with Coomassie Blue. The purity of the protein is greater than 95%.

IFA-H5258

The purity of Human IFN-alpha 1, Fc Tag (Cat. No. IFA-H5258) is more than 90% and the molecular weight of this protein is around 90-118 kDa verified by SEC-MALS.

高生物活性经ELISA验证
IF1-H5223

Immobilized ActiveMax® Human IFN-gamma, Tag Free (Cat. No. IFG-H4211) at 5 μg/mL (100 μL/well) can bind Human IFN-gamma R1, His Tag (Cat. No. IF1-H5223) with a linear range of 0.01-0.313 μg/mL.

申请 Protocol

IF2-H5224

Immobilized Human IFNAR2, His Tag (Cat. No. IF2-H5224) at 5 μg/mL (100 μL/well) can bind Human IFN-alpha 2b (K46R), Fc Tag (Cat. IFB-H5253) with a linear range of 2.4-10 ng/mL.

申请 Protocol

高亲和力经BLI及SPR验证
IFA-H52H9

Loaded Human IFN-alpha 1, His Tag (Cat. No. IFA-H52H9) on HIS1K Biosensor, can bind Human IFNAR1, Fc Tag (Cat. No. IF1-H5253) with an affinity constant of 0.191 μM as determined in BLI assay (ForteBio Octet Red96e).

申请 Protocol

IF1-M5225

Mouse IFN-alpha / beta R1, His Tag (Cat. No. IF1-M5225) immobilized on CM5 Chip can bind Mouse IFN-alpha 1, His Tag (Cat. No. IFA-M52H3) with an affinity constant of 2.96 μM as determined in a SPR assay (Biacore 8K).

申请 Protocol

参考文献
  • 1. Li Q, Tan F, Wang Y, et al. The gamble between oncolytic virus therapy and IFN[J]. Frontiers in Immunology, 2022, 13.https://doi.org/10.3389/fimmu.2022.971674.
  • 2. Zhang X, Zou M, Liang Y, et al. Arctigenin inhibits abnormal germinal center reactions and attenuates murine lupus by inhibiting IFN-I pathway[J]. European Journal of Pharmacology, 2022, 919: 174808.https://doi.org/10.1016/j.ejphar.2022.174808.
  • 3. Barrat F J, Crow M K, Ivashkiv L B. Interferon target-gene expression and epigenomic signatures in health and disease[J]. Nature immunology, 2019, 20(12): 1574-1583.https://doi.org/10.1038/s41590-019-0466-2.
  • 4. Felten R, Scher F, Sagez F, et al. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: evidence to date[J]. Drug design, development and therapy, 2019, 13: 1535.https://doi.org/10.2147/DDDT.S170969.

消息提示

请输入您的联系方式,再点击提交!

确定